

产品确认书

Product Confirmation

CUSTOMER:

Product :

Frequency:

Model:

DATE:

声表面谐振器

R315M

SMD5035mm

承认后请寄回一份

PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认結果	客戶签名	客戶承认章	日期	备注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格				
ACCEPT				
不合格				
REJECT				

制表: 刘小姐

审核:

(公章)

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

1.Package Dimension

(S53)

Unit: mm

e.g.: "C5" means March of 2005

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

3.Performance

3.1 Application

One-port SAW Resonator for Wireless Remote Controller. Center frequency: 315.000MHz

3.2 Maximum Rating

DC Voltage V _{DC}	10V
AC Voltage V _{PP}	10V (50Hz/60Hz)
Operation Temperature Range	-40°C to +85°C
Storage Temperature Range	-45°C to +85°C
RF Power Dissipation	0 dBm

3.3 Electronic Characteristics

	Item	Units	Minimum Typical		Maximum	
Center Freque	ency (fo)	MHz	314.925	315.000	315.075	
Insertion Loss	Insertion Loss		—	1.7	2.4	
Quality Factor	Unloaded Q		— 12,200		—	
	50Ω Loaded Q		_	— 1,500		
Temperature	Turnover Temperature	°C		25	—	
Stability	Turnover Frequency	KHz		fo	_	
	Freq. Temp. Coefficient	ppm/°C ²		0.032	—	
Frequency Ag	requency Aging			<±10	—	
DC Insulation	n Resistance	MΩ	1.0		—	
	Motional Resistance R ₁	Ω	_	14	25	
RF Equivalent	Motional Inductance L ₁	μH		86	—	
RLC Model	Motional Capacitance C ₁	fF		2.95	—	
	Shunt Static Capacitance C ₀	pF	2.1	2.4	2.7	

3.4 Frequency Characteristics

3.5 Test Circuit

4 Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after three one-half sine shock pulses(3000g's for 0.3 ms) in each direction(for six total) along each of the three mutually perpendicular axes for a total of 18 shocks.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20~55Hz, amplitude 1.5mm, X,Y,Z, direction, for 2 hours.
- 4.3 Leak Test
- 4.3.1 Gross Leak Test: Submerge samples into at +85℃ water for at least 1 minute. Carefully observe the samples. No bubbles should be seen.
- 4.3.2 Fine Leak Test: Expose samples for testing to 60 PSIG Helium gas for 2 hours. Then transfer the same samples to another chamber and draw a vacuum. Measure the leak rate. Failure is defined if the leak rate exceeds 5×10^{-8} atm cc/sec Helium.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 °C ± 2 °C for 960 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -40° C $\pm 2^{\circ}$ C for 960 hours, then kept at room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specification after 32 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes → 25°C for 20 seconds → -40°C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Humidity Test: The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 70°C, and 90~95% RH for 240 hours, then kept at room temperature and normal humidity for 4 hours.
- 4.8 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at $260^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 10 to 11 seconds, then kept at room temperature for 10 minutes.
- 4.9 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}C \pm 5^{\circ}C$ for 5 ± 1 seconds.

4.10 Storage: The components shall meet the electrical and mechanical specifications after 5 years storage, if stored within the temperature range of $-40^{\circ}C \sim +85^{\circ}C$ and in the humidity of 20 to 60% r.h.

5 Remarks

5.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.

6 Packing

6.1 Dimensions

- (1) Carrier Tape: Figure 1
- (2) Reel: Figure 2
- (3) The product shall be packed properly not to be damaged during transportation and storage.

6.2 Reeling Quantity

1,000 pcs/reel

6.3 Taping Structure

(1) The tape shall be wound around the reel in the direction shown below.

(2) Label

Device Name	
Туре	
Quantity	
Lot No.	

(3) Leader part and vacant position specifications.

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

7 Tape Specifications

- 7.1 Tensile Strength of Carrier Tape: 4.4N/mm width
- 7.2 Top Cover Tape Adhesion (See the below figure)
 - (1) pull off angle: $0 \sim 15^{\circ}$
 - (2) speed: 300mm/min.
 - (3) force: 20~70g

[Figure 1] Carrier Tape Dimensions

Tape Running Direction

[Unit: mm]

W	F	Е	P0	P1	P2	D0	D1	t1	t2	А	В
12.0	5.5	1.75	4.0	8.0	2.0	Φ1.5	Φ1.5	0.31	1.95	3.8	5.3
± 0.3	± 0.1	± 0.1	± 0.2	± 0.1	± 0.2	± 0.1	± 0.25	max.	max.	max.	max.

[Figure 2] Reel Dimensions

[Unit: mm]

[Figure 3] Part Direction

Tape Running Direction