

产	品确	畒	书
/		コトレノ	· / •

Product Confirmation

CUSTOMER:

Product : Frequency:

Model:

DATE:

声表面谐振器

R433M

F-11 DIP

承认后请寄回一份

PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认結果	客戶签名	客戶承认章	日期	备注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格 ACCEPT				
不合格				
REJECT				

制表: 刘小姐

审核:

(公章)

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!

1. Package Dimension

(F-11)

Unit: mm

Pin No.	Function		
1.	Input		
2.	Ground		
3.	Ground		
4.	Output		

2. Marking

TR433.92M

- 1. Color: Black or Blue
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 433.92: Center Frequency (MHz)

3. Equivalent LC Model

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

4. Performance

4.1 Maximum Rating

DC Voltage V _{DC}	10V
AC Voltage V _{PP}	10V (50Hz/60Hz)
Operation Temperature	-40 °C to +85 °C
Storage Temperature	-45℃ to +85℃
RF Power Dissipation	0dBm

4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency		MHz	433.845	433.92	433.995
Insertion Loss		dB		1.3	2.5
Quality Factor	Unloaded Q			11,000	
	50 Ω Loaded Q			2,000	
Temperature	Turnover Temperature	°C		25	
Stability	Turnover Frequency	KHz		fo	
	Freq. Temp. Coefficient	ppm/°C ²		0.032	
Frequency Aging		ppm/yr		<±10	
DC Insulation Resistance		MΩ	1.0		
	Motional Resistance R ₁	Ω		18	26
RF Equivalent RLC Model	Motional Inductance L ₁	μЦ		86	
	Motional Capacitance C ₁	fF		1.56	
	Shunt Static Capacitance Co	pF	1.7	2.0	2.3

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be 25 ± 2 °C. However, the measurement may be carried out at 5 °C to 35 °C unless there is a dispute.

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}C \pm 2^{\circ}C$ for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80° C for 30 minutes $\rightarrow 25^{\circ}$ C for 5 minutes $\rightarrow -25^{\circ}$ C for 30 minutes)than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}C \pm 5^{\circ}C$ for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid

ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.